一般選抜問題 前期(A日程)

数学

(問題:全6ページ) (解答番号: 1 ~ 69)
数学の問題には、必答問題と学科別問題があります。
第1問は記述解答問題です。記述問題解答用紙に解答してください。
記述問題解答用紙には受験番号と氏名を必ず記入してください。
必答問題 第1問および第2問は必ず解答してください。
(第1問 記述問題解答用紙に解答)
(第2問 解答番号: 1 ~ 15)
学科別問題
機械システム工学科、電子ロボット工学科および情報メディア学科を
志願して学内併願を希望の志願者
第3問と第4問を解答してください。
(第3問 解答番号: 16 ~ 29)
(第4問 解答番号: 30 ~ 41)
情報メディア学科の専願志願者
第5問と第6問を解答してください。
(第5問 解答番号: 42 \sim 54)

55

69)

(第6問 解答番号:

第1問 (必答問題)

以下の記述解答問題を, 記述問題解答用紙に解答せよ。

kを実数の定数とするとき,xの方程式

$$\log_2(x^2+1) \cdot \log_{\frac{1}{2}}(x^2+1) - \log_{\sqrt{2}}\frac{1}{(x^2+1)^2} + k = 0$$

の実数解の個数を調べよ。

第2問 (必答問題)

以下の式中または文中の 1 ~ 15 に入る正しい数字 $(0 \sim 9)$ を,マークシート上の該当する番号 $1 \sim 15$ の解答欄にマークして答えよ。

関数 $f(\theta) = \frac{\sin \theta - 7}{\cos \theta - 4}$ の最大値および最小値をそれぞれ求めよう。

 $t = f(\theta)$, $x = \cos \theta - 4$, $y = \sin \theta - 7$ とおくと,

$$\begin{cases} y = tx & \cdots & 1 \\ \left(x + 1\right)^2 + \left(y + 2\right)^2 = 3 & \cdots & 2 \end{cases}$$

①を②に代入して、yを消去すると、

$$(t^2 + 4)x^2 + 2(5)t + 6)x + 78 = 0 \cdots 3$$

直線① と円② が共有点をもつためには、x の 2 次方程式③ の判別式を D としたとき、 $D \ge 0$ でなければならない。これより、t に関する 2 次不等式

$$15t^2 - 9 \quad 10 \quad t + 11 \quad 12 \leq 0$$

が得られる。これを解くと,

$$\begin{array}{c|c} \hline 13 \\ \hline 3 \\ \hline \end{array} \le t \le \begin{array}{c|c} \hline 14 \\ \hline 5 \\ \hline \end{array}$$

第3問 (学科別問題) (機械システム工学科/電子ロボット工学科/情報メディア学科 を志願して学内併願希望の志願者は、この問題を選択して解答せよ。)

以下の式中または文中の 16 ~ 29 に入る正しい数字 $(0 \sim 9)$ を,マークシート上の該当する番号 $16 \sim 29$ の解答欄にマークして答えよ。

2次関数 $f(x) = x^2 - 8x + 15$ と f(a) > 0 を満たす 定数 a に対して、漸化式

$$x_1 = a$$
, $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ $(n \ge 1)$

によって定められる数列 $\{x_n\}$ について考えよう。ここで、f'(x)は、f(x)の導関数である。

定数aのとり得る値の範囲は、 $a < \boxed{16}$, $\boxed{17} < a$ である。

また, f'(x) = 18 x - 19 であるから, 漸化式は,

$$x_{n+1} = \frac{1}{2 \ 0} \left(x_n + 2 \ 1 + \frac{1}{x_n - 2 \ 2} \right)$$

と表される。これより,
$$\frac{x_{n+1}-\boxed{16}}{x_{n+1}-\boxed{17}}=\left(\frac{x_n-\boxed{16}}{x_n-\boxed{17}}\right)^{23}$$
 となるから,

$$\frac{x_n - \boxed{16}}{x_n - \boxed{17}} = \left(\frac{a - \boxed{16}}{a - \boxed{17}}\right)^{\boxed{23}^{n-24}}$$
 が得られる。

したがって、数列 $\{x_n\}$ の一般項は、

$$x_{n} = \frac{25 - 26 \left(\frac{a - 16}{a - 17}\right)^{23} - 24}{27 - \left(\frac{a - 16}{a - 17}\right)^{23} - 24}$$

となる。また、数列 $\{x_n\}$ の極限値は、

$$a < 16$$
 のとき、 $\lim_{n \to \infty} x_n = 28$

である。

第4問 (学科別問題) (機械システム工学科/電子ロボット工学科/情報メディア学科 を志願して学内併願希望の志願者は、この問題を選択して解答せよ。)

以下の式中または文中の 30 ~ 41 に入る正しい数字 $(0 \sim 9)$ を,マークシート上の該当する番号 $30 \sim 41$ の解答欄にマークして答えよ。ただし,分数形で解答する場合は,既約分数(それ以上約分できない分数)の形で答えよ。また,根号を含む形で解答する場合は,根号の中に現れる自然数が最小となる形で答えよ。

[1] 2点A(-5, 0), B(5, 0)と円 $(x+5)^2+y^2=36$ がある。

円上に点Qをとり、線分BQの垂直二等分線と直線AQとの交点をPとするとき、

点 P から 2 点 A, B までの距離の差 | PA – PB | は, 一定の値 3 0 をとる。

したがって、点Qが円上を動くとき、点Pの軌跡は、双曲線

$$\frac{x^2}{\boxed{31}} - \frac{y^2}{\boxed{32} \boxed{33}} = 1$$

である。また,この双曲線の漸近線の方程式は, $y=\pm \frac{34}{35}x$ である。

- [2] $0 \le x \le \pi$ において、2 曲線 $y = \sin x$ 、 $y = \cos \frac{x}{2}$ で囲まれた図形がある。
 - (1) 2曲線の交点のx座標は, $x = \frac{\pi}{3.6}$, π である。
 - (2) 図形の面積は、 37 である。 38
 - (3) 図形をx軸の周りに1回転させてできる立体の体積は, 39 $\sqrt{40}$ である。

第5問 (学科別問題) (情報メディア学科専願の志願者は、この問題を選択して解答せよ。)

以下の式中または文中の 42 ~ 54 に入る正しい数字 $(0 \sim 9)$ を,マークシート上の該当する番号 $42 \sim 54$ の解答欄にマークして答えよ。ただし,分数形で解答する場合は,既約分数(それ以上約分できない分数)の形で答えよ。

C市の住民のa%の人は,ウイルス V に感染している。このウイルスに感染したかどうかを判定する検査法 T では,感染した人を陽性と判定する確率が 70 %,感染していない人を陰性と判定する確率が 90% である。ただし,a は $0 \le a \le 100$ の実数とする。

C市のAさんが検査法Tを受けて陽性と判定されたとき、AさんがウイルスVに感染している確率を考えよう。

A さんがウイルスV に感染している事象をK,検査法T を受けて陽性と判定される事象をY,これらの余事象をそれぞれ \overline{K} , \overline{Y} とすると, \overline{K} の確率 $P(\overline{K})$ は,

$$P\left(\overline{K}\right) = 2 - \frac{a}{100}$$
 , K が起こったときの Y が起こる条件付き確率 $P_{K}(Y)$ は,

$$P_{\scriptscriptstyle K}(Y) = \frac{43}{10}$$
 , \overline{K} が起こったときの Y が起こる条件付き確率 $P_{\scriptscriptstyle \overline{K}}(Y)$ は,

$$P_{\overline{\scriptscriptstyle{K}}}(Y)=\frac{\boxed{4\ 4}}{10}$$
 であるから、A さんが陽性と判定される確率、すなわち、Y の確率 $P(Y)$

は、
$$P(Y) = \frac{45 a + 46 47}{500}$$
となる。

したがって、A さんが陽性と判定されたとき、ウイルス V に感染している確率、すなわち、

$$Y$$
 が起こったときの K が起こる条件付き確率 $P_{\scriptscriptstyle Y}(K)$ は, $P_{\scriptscriptstyle Y}(K)=\frac{4\,8\,a}{4\,9\,a+100}$ である。

これより、C市の住民のうち、ウイルスVに感染している割合が5%未満であるとき、

$$P_{\scriptscriptstyle Y}(K)<rac{50}{5152}$$
となる。

また、A さんが陽性と判定されたとき、ウイルス V に感染していない確率が 25% 以下のときは、C 市の住民のうち、53 54 %以上の人が、ウイルス V に感染していることが分かる。

第6問 (学科別問題) (情報メディア学科専願の志願者は,この問題を選択して解答せよ。)

以下の式中または文中の 55 ~ 69 に入る正しい数字 $(0 \sim 9)$ を,マークシート上の該当する番号 $55 \sim 69$ の解答欄にマークして答えよ。ただし,分数形で解答する場合は,既約分数(それ以上約分できない分数)の形で答えよ。また,根号を含む形で解答する場合は,根号の中に現れる自然数が最小となる形で答えよ。

放物線 $y=x^2$ を C_1 とし、2 点 $A\left(\frac{1}{2},\frac{1}{4}\right)$ 、 $B\left(-\frac{1}{2},\frac{1}{4}\right)$ で C_1 と接する円を C_2 とする。また、放物線 C_1 上の点 A における接線を l_1 、点 A を通り、 l_1 と垂直な直線を l_2 とする。

(1) 直線
$$l_1$$
の傾きは 55 ,切片は $-\frac{1}{56}$ である。

また,直線 l_2 の傾きは- 57 ,切片は58 である。

$$(2)$$
 円 C_2 の中心は $\left(\begin{array}{c} 60 \\ \hline 62 \end{array}\right)$, 半径は $\frac{1}{\sqrt{63}}$ である。

(3) 放物線 C_1 と円 C_2 で囲まれた部分の面積Sを求めよう。

第1象限において、放物線 C_1 と直線 l_2 およびy軸で囲まれた部分の面積を求めると、