一般選抜問題 前期(A日程)

数学

(配点と解答例)

第1問 (必答問題) 配点: 25点

直線 y=mx+2が 円 $x^2+y^2-4x-6y+12=0$ によって切り取られる線分の長さが $\sqrt{2}$ のとき、定数 m の値をすべて求めよ。

[解答] 円の方程式を変形すると, $(x-2)^2+(y-3)^2=1$ となるから,円の中心の座標は(2,3),半径は1である。直線と円との交点をA,B,円の中心をC,点Cから直線へ下ろした垂線をCHとすると,

右の図より、 AC = BC = 1、 $AB = \sqrt{2}$ であるから、 $AC^2 + BC^2 = AB^2$ より、 $\triangle ABC$ は AC = BC $\angle ACB = 90^\circ$ の直角二等辺三角形となる。 さらに、 $\triangle ACH$ も AH = CH の直角二等辺三角形となるか

ら, $CH = \frac{1}{\sqrt{2}}$ となる。一方,CH は点C と直線と

の距離でもあるから,

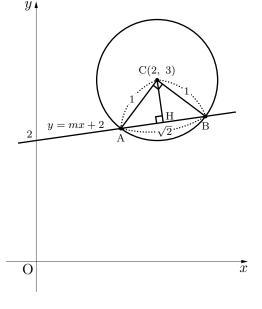
$$CH = \frac{|2m+2-3|}{\sqrt{m^2+1}} = \frac{|2m-1|}{\sqrt{m^2+1}}$$

となる。したがって,

$$\frac{|2m-1|}{\sqrt{m^2+1}} = \frac{1}{\sqrt{2}} \qquad \dots \dots \quad \text{(1)}$$

となる。両辺 2 乗して整理すると, $7m^2 - 8m + 1 = 0$ より,(7m-1)(m-1) = 0 となる。

 $m=\frac{1}{7}$, 1は①を満たすから、定数mの値は、 $m=\frac{1}{7}$, 1 · · · (答え)



第2問 (必答問題) 配点: 25点

 $0 \le \theta \le \pi$ のとき, 方程式

の解 θ を求める。

 $t=\sin\theta+\cos\theta$ とおくと, $t^2=\sin^2\theta+\cos^2\theta+2\sin\theta\cos\theta=1+\sin2\theta$ より,① は

$$\frac{2}{2}$$
 $t^2 + \frac{2}{2}$ $\sqrt{6}t - \frac{9}{9} = 0$ 2

となる。

となるから、 tのとり得る値の範囲は、

$$-\boxed{1} \leq t \leq \sqrt{\boxed{2}} \qquad \dots \qquad (4)$$

となる。④ の範囲で② をt について解くと, $t=\frac{\sqrt{6}}{2}$ となる。

したがって、③の範囲で
$$\sqrt{2}\sin\left(\theta + \frac{\pi}{4}\right) = \frac{\sqrt{6}}{2}$$

すなわち,
$$\sin\left(\theta + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2} \ \epsilon \ \theta \$$
について解くと,

$$\theta + \frac{\pi}{4} = \frac{\pi}{3}$$
, $\frac{2}{3}\pi$ より, ①の解 θ は,

$$\theta = \frac{\pi}{\boxed{1}}, \frac{\boxed{5}}{12} \pi \, \& \& \& \& \&$$

解答番号	크	正	解	配	点	備	考
	1		2		5		
	2		2				
	3		9				
	4		2		4		
	5		4				
	6		4		4		
	-		۲				

解答番号	正	解	配	点	備	考
9		1		4		
10		2				
11		6		4		
12		2				
13		1		4		
14		2				
15		5				

y 1 $\sqrt{3}$
$y = \frac{\sqrt{3}}{2}$ $\frac{\pi}{3} \frac{\pi}{4}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
-1

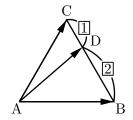
第3問 (学科別問題) (K/R科またはJ科(学内併願) 志願者選択)

配点:25点

1辺の長さが1の正三角形 ABC において、辺 BC を 2:1 に内分する点を D とする。

$$\overrightarrow{AD} = \frac{1}{3} \left(\overrightarrow{AB} + \boxed{2} \overrightarrow{AC} \right) \succeq \overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} \not\Rightarrow \vec{b}$$

$$\overrightarrow{AB} \cdot \overrightarrow{AD} = \frac{1}{3} \left(|\overrightarrow{AB}|^2 + 2 \overrightarrow{AB} \cdot \overrightarrow{AC} \right) = \frac{2}{3}$$
 $\succeq \cancel{a} \cancel{b} \cancel{b} \cancel{b}$



一方,
$$|\overrightarrow{AD}|^2 = \frac{1}{9} \left(\overrightarrow{AB} + 2 \, \overrightarrow{AC} \right) \cdot \left(\overrightarrow{AB} + 2 \, \overrightarrow{AC} \right) = \frac{1}{9} \left(|\overrightarrow{AB}|^2 + 4 \, \overrightarrow{AB} \cdot \overrightarrow{AC} + 4 \, |\overrightarrow{AC}|^2 \right) = \frac{7}{9}$$
より,

$$|\overrightarrow{\mathrm{AD}}| = \frac{\sqrt{7}}{3}$$
 となる。 さらに、 $\cos \angle \mathrm{BAD} = \frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AD}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AD}}|} = \frac{2}{\sqrt{7}}$ となる。

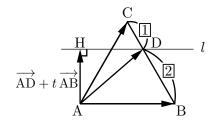
また、tが実数全体を動くとき、

$$|\overrightarrow{AD} + t \overrightarrow{AB}|^{2} = (\overrightarrow{AD} + t \overrightarrow{AB}) \cdot (\overrightarrow{AD} + t \overrightarrow{AB})$$

$$= |\overrightarrow{AD}|^{2} + 2t \overrightarrow{AD} \cdot \overrightarrow{AB} + t^{2} |\overrightarrow{AB}|^{2}$$

$$= t^{2} + \frac{4}{3}t + \frac{7}{9} = (t + \frac{2}{3})^{2} + \frac{1}{3}$$

$$\overrightarrow{AD} + t \overrightarrow{AB}$$



より, $|\overrightarrow{AD} + t \overrightarrow{AB}|^2$ は, $t = -\frac{2}{3}$ のとき,最小値 $\frac{1}{3}$ をとる。このとき, $|\overrightarrow{AD} + t \overrightarrow{AB}| \ge 0$ より,

$$|\overrightarrow{\mathrm{AD}} + t \, \overrightarrow{\mathrm{AB}}|$$
 も最小となるから, $|\overrightarrow{\mathrm{AD}} + t \, \overrightarrow{\mathrm{AB}}|$ は, $t = -\frac{2}{3}$ のとき,最小値 $\frac{1}{\sqrt{3}}$ をとる。

[別解] 右上の図において、点Dを通り、 \overrightarrow{AB} に平行な直線をl、点 A から直線l へ下ろした垂線を AH とすると、t が実数全体を動くとき、 $|\overrightarrow{AD}+t\overrightarrow{AB}|$ の最小値は、点 A と直線l との距離 AH である。このとき、 $\overrightarrow{AH}\perp\overrightarrow{AB}$ であるから、 $\overrightarrow{AH}\cdot\overrightarrow{AB}=0$ より、 $(\overrightarrow{AD}+t\overrightarrow{AB})\cdot\overrightarrow{AB}=\frac{2}{3}+t=0$ すなわち、 $t=-\frac{2}{3}$ となる。さらに、 $\overrightarrow{DH}=-\frac{2}{3}$ \overrightarrow{AB} より、 $\overrightarrow{DH}=\frac{2}{3}$ となる。したがって、 \triangle AHD において、三平方の定理より、 $\overrightarrow{AH}=\sqrt{\overrightarrow{AD}^2-\overrightarrow{DH}^2}=\sqrt{\frac{7}{9}-\frac{4}{9}}=\frac{1}{\sqrt{3}}$ となり、この値が $|\overrightarrow{AD}+t\overrightarrow{AB}|$ の最小値となる。

解答番号	正	解	配	点	備	考
16		3		3		
17		2				
18		1		3		
19		2				
20		2		4		
21		3				

解答番号	正	解	配	点	備	考
22		7		4		
23		3				
24		2		3		
25		7				
26		2		4		
27		3				
28		1		4		
29		3				

関数

によって表される曲線をCとする。

① は
$$y=2x+1+rac{2}{x-2}$$
 と変形される。 したがって, $\lim_{x o 2-0}y=-\infty$, $\lim_{x o 2+0}y=\infty$,

$$\lim_{x \to -\infty} \left\{ y - (2x+1) \right\} = \lim_{x \to -\infty} \frac{2}{x-2} = 0 \,, \quad \lim_{x \to \infty} \left\{ y - (2x+1) \right\} = \lim_{x \to \infty} \frac{2}{x-2} = 0 \,\, \mbox{\sharp b, }$$

① の漸近線の方程式は、
$$x=$$
 2 , $y=$ 2 $x+$ 1 である。

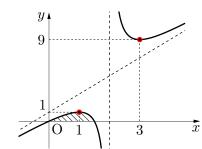
 $f(x) = 2x + 1 + \frac{2}{x-2}$ とおくと、曲線 C の原点における接線の方程式は、y = f'(0)x と表される。

したがって,
$$f'(x) = 2 - \frac{2}{(x-2)^2}$$
 より, $f'(0) = \frac{3}{2}$ となるから,接線の方程式は, $y = \frac{3}{2}$ x

である。

 $f'(x)=rac{2(x-1)(x-3)}{(x-2)^2}$ より、① の増減と曲線Cの概形との対応は次のようになる。

x		1		2		3	
f'(x)	+	0	_		_	0	+
f(x)	7	1	×		×	9	7



したがって、① はx= 1 のとき、極大値 1 をとり、x= 3 のとき、極小値 9 をとる。

① とx軸との交点のx座標は,x=0, $\frac{3}{2}$ で, $0 \le x \le \frac{3}{2}$ のとき, $y \ge 0$ である。

したがって、曲線Cとx軸で囲まれた図形の面積は、

$$\int_0^{\frac{3}{2}} \left(2x + 1 + \frac{2}{x - 2} \right) dx = \left[x^2 + x + 2\log|x - 2| \right]_0^{\frac{3}{2}} = \frac{1}{4} = \frac{5}{4} = \frac{4}{4} = \frac{1}{4} = \frac{5}{4} = \frac{1}{4} = \frac{5}{4} = \frac{1}{4} = \frac{5}{4} = \frac{1}{4} = \frac{1}{4}$$

である。

解答番号	正	解	配	点	備	考
30		2		2		
31		2		3		
32		1				
33		3		4		
34		2				
35		1		5		
36		1				

解答番号	正	解	配	点	備	考
37		3		5		
38		9				
39		1		6		
40		5				
41		4				
42		4				

第5問 (学科別問題) (J科專願志願者選択) 配点:25点

5個の数字 0, 1, 2, 3, 4から異なる数字を 4個選んで, 4桁の整数を作る。

- (1) 4桁の整数について,千の位は5個の数字のうちで,0 は除かれるから,4通りある。残りの下3桁は $_4P_3$ 通りある。したがって,4桁の整数は $4\times_4P_3=4\times4\times3\times2=$ 9 個ある。
- (2) 4桁の奇数について,一の位は $1 \ge 3$ の 2 通りある。次に千の位は残り 4 個の数のうち,0 は除かれるから 3 通りある。残りの 2 桁は $_3$ $_3$ $_2$ 通りある。したがって,4 桁の奇数は $2 \times 3 \times _3$ $_3$ $_2$ $_2$ $_3$ $_3$ 個ある。
- (4) 4 桁の3 の倍数について,各桁の数字の和は3 の倍数になる。5 個の数字の和は10 であるから,5 個の数字のうちで1 または4 を除いた4 個の数字を使えばよい。千の位は0 を除いた3 通りで,残りの下3 桁は $_3$ P $_3$ 通りある。したがって,3 の倍数は $2 \times 3 \times _3$ P $_3 = \boxed{ 3 \qquad 6 }$ 個ある。
- (5) 4 桁の整数の中で,千の位が 1 または 2 となる整数は,それぞれ $_4P_3=24$ 個ある。また,上 2 桁が 30 または 31 となる整数は,それぞれ $_3P_2=6$ 個ある。したがって,上 2 桁が 32 で最小となる 3201 は 48+12+1=61 番目に小さい数となるから,3210 は 62 番目に小さい 3204 をはさんで $\boxed{6}$ $\boxed{3}$ 番目に小さい整数である。
- (6) 4桁の整数の中で、2000 より小さい整数は、千の位が 1 となる整数であるから、 $_4P_3 = 24$ 個ある。 一方、 $_4000$ より大きい整数は、千の位が $_4$ となる整数であるから、 $_4P_3 = 24$ 個ある。したがって、2000 以上 $_4000$ 以下の範囲に入る整数は $_96 _48 =$ 4 8 個ある。

解答番号	正	解	配	点	備	考
43		9		4		
44		6				
45		6		4		
46		0				
47		1		4		
48		2				

解答番号	正	解	配	点	備	考
49		3		4		
50		6				
51		6		5		
52		3				
53 54		4		4		
54		8				

第6問 (学科別問題) (J科專願志願者選択) 配点:25点

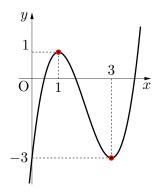
関数

$$y = x^3 - 6x^2 + 9x - 3$$
 ①

によって表される曲線を C とする。 $f(x) = x^3 - 6x^2 + 9x - 3$ とおくと,

 $f'(x) = 3x^2 - 12x + 9 = 3(x-1)(x-3)$ より、① の増減および曲線 C の概形は次のようになる。

x		1		3	
f'(x)	+	0	_	0	+
f(x)	7	1	¥	-3	7



よって、x = 1 のとき、極大値 1 をとり、x = 3 のとき、極小値 - 3 をとる。

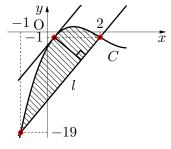
点 (0,5) から、曲線 Cへの接線の方程式は、接点を (a,f(a)) とおくと、y-f(a)=f'(a)(x-a) となる。これが点 (0,5) を通るから、5-f(a)=-af'(a) すなわち、 $a^3-3a^2+4=0$ を満たす。この解

2点(-1, -19),(2, -1)を通る直線をlとすると,直線lの方程式は,y = 6x - 13となる。 $-1 \le x \le 2$ において,直線lと曲線Cで囲まれた図形の面積は,

$$\int_{-1}^{2} \{f(x) - (6x - 13)\} dx = \int_{-1}^{2} (x^3 - 6x^2 + 3x + 10) dx$$

$$= \left[\frac{1}{4}x^4 - 2x^3 + \frac{3}{2}x^2 + 10x \right]_{-1}^{2}$$

$$= \frac{8}{4}$$



解答番号	正	解	配	点	備	考
55 56		1		3		
56		1				
57		3		3		
58		3				
59		1		4		
60		1				
61		9				

解答番号	正	解	配	点	備	考
62		2		4		
63		1				
64		8		6		
65		1				
66		4				
67		2		5		
68		3				
69		1				